Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Introducing superconductivity in topological materials can lead to innovative electronic phases and device functionalities. Here, we present a unique strategy for quantum engineering of superconducting junctions in moiré materials through direct, on-chip, and fully encapsulated 2D crystal growth. We achieve robust and designable superconductivity in Pd-metalized twisted bilayer molybdenum ditelluride (MoTe2) and observe anomalous superconducting effects in high-quality junctions across ~20 moiré cells. Unexpectedly, the junction develops enhanced, instead of weakened, superconducting behaviors, exhibiting fluctuations to a higher critical magnetic field compared to its adjacent Pd7MoTe2superconductor. In addition, the critical current further exhibits a notable V-shaped minimum at zero magnetic field. These features are unexpected in conventional Josephson junctions and absent in junctions of natural bilayer MoTe2created using the same approach. We discuss implications of these observations, including the possible formation of mixed even- and odd-parity superconductivity at the moiré junctions. Our results also demonstrate a pathway to engineer and investigate superconductivity in fractional Chern insulators.more » « lessFree, publicly-accessible full text available January 31, 2026
-
Abstract Van der Waals (vdW) ferroelectrics have attracted significant attention for their potential in next-generation nano-electronics. Two-dimensional (2D) group-IV monochalcogenides have emerged as a promising candidate due to their strong room temperature in-plane polarization down to a monolayer limit. However, their polarization is strongly coupled with the lattice strain and stacking orders, which impact their electronic properties. Here, we utilize four-dimensional scanning transmission electron microscopy (4D-STEM) to simultaneously probe the in-plane strain and out-of-plane stacking in vdW SnSe. Specifically, we observe large lattice strain up to 4% with a gradient across ~50 nm to compensate lattice mismatch at domain walls, mitigating defects initiation. Additionally, we discover the unusual ferroelectric-to-antiferroelectric domain walls stabilized by vdW force and may lead to anisotropic nonlinear optical responses. Our findings provide a comprehensive understanding of in-plane and out-of-plane structures affecting domain properties in vdW SnSe, laying the foundation for domain wall engineering in vdW ferroelectrics.more » « less
-
Magnetic topological semimetals allow for an effective control of the topological electronic states by tuning the spin configuration. Among them, Weyl nodal line semimetals are thought to have the greatest tunability, yet they are the least studied experimentally due to the scarcity of material candidates. Here, using a combination of angle-resolved photoemission spectroscopy and quantum oscillation measurements, together with density functional theory calculations, we identify the square-net compound EuGa4as a magnetic Weyl nodal ring semimetal, in which the line nodes form closed rings near the Fermi level. The Weyl nodal ring states show distinct Landau quantization with clear spin splitting upon application of a magnetic field. At 2 K in a field of 14 T, the transverse magnetoresistance of EuGa4exceeds 200,000%, which is more than two orders of magnitude larger than that of other known magnetic topological semimetals. Our theoretical model suggests that the non-saturating magnetoresistance up to 40 T arises as a consequence of the nodal ring state.more » « less
-
When an electron is incident on a superconductor from a metal, it is reflected as a hole in a process called Andreev reflection. If the metal N is sandwiched between two superconductors S in an SNS junction, multiple Andreev reflections (MARs) occur. We have found that, in SNS junctions with high transparency ( τ → 1 ) based on the Dirac semimetal MoTe 2 , the MAR features are observed with exceptional resolution. By tuning the phase difference φ between the bracketing Al superconductors, we establish that the MARs coexist with a Josephson supercurrent I s = I A sin φ . As we vary the junction voltage V , the supercurrent amplitude I A varies in step with the MAR order n , revealing a direct relation between them. Two successive Andreev reflections serve to shuttle a Cooper pair across the junction. If the pair is shuttled coherently, it contributes to I s . The experiment measures the fraction of pairs shuttled coherently vs. V . Surprisingly, superconductivity in MoTe 2 does not affect the MAR features.more » « less
An official website of the United States government
